A Computational Model for Multi-variable Differential Calculus
نویسندگان
چکیده
We develop a domain-theoretic computational model for multi-variable differential calculus, which for the first time gives rise to data types for piecewise differentiable or more generally Lipschitz functions, by constructing an effectively given continuous Scott domain for real-valued Lipschitz functions on finite dimensional Euclidean spaces. The model for real-valued Lipschitz functions of n variables is built as a sub-domain of the product of two domains by tupling together consistent information about locally Lipschitz functions and their differential properties as given by their L-derivative or equivalently Clarke gradient, which has values given by non-empty, convex and compact subsets of R. To obtain a computationally practical framework, the derivative information is approximated by the best fit compact hyper-rectangles in R. In this case, we show that consistency of the function and derivative information can be decided by reducing it to a linear programming problem. This provides an algorithm to check consistency on the rational basis elements of the domain, implying that the domain can be equipped with an effective structure and giving a computable framework for multi-variable differential calculus. We also develop a domain-theoretic, interval-valued, notion of line integral and show that if a Scott continuous function, representing a non-empty, convex and compact valued vector field, is integrable, then its interval-valued integral over any closed piecewise C path contains zero. In the case that the derivative information is given in terms of compact hyper-rectangles, we use techniques from the theory of minimal surfaces to deduce the converse result: a hyper-rectangular valued vector field is integrable if its interval-valued line integral over any piecewise C path contains zero. This gives a domain-theoretic extension of the fundamental theorem of path integration. Finally, we construct the least and the greatest piecewise linear functions obtained from a pair of function and hype-rectangular derivative information. A preliminary version of this article appeared in the Proceedings of the Eight International Conference on Foundations of Software Science and Computational Structures, FOSSACS 2005, LNCS, vol. 3441, Springer, pp 505-519. Corresponding author Email addresses: [email protected] (Abbas Edalat), [email protected] (André Lieutier), [email protected] (Dirk Pattinson) When the pair is consistent, this provides the least and greatest maps to witness consistency.
منابع مشابه
A numerical approach for variable-order fractional unified chaotic systems with time-delay
This paper proposes a new computational scheme for approximating variable-order fractional integral operators by means of finite element scheme. This strategy is extended to approximate the solution of a class of variable-order fractional nonlinear systems with time-delay. Numerical simulations are analyzed in the perspective of the mean absolute error and experimental convergence order. To ill...
متن کاملInvariant functions for solving multiplicative discrete and continuous ordinary differential equations
In this paper, at first the elemantary and basic concepts of multiplicative discrete and continous differentian and integration introduced. Then for these kinds of differentiation invariant functions the general solution of discrete and continous multiplicative differential equations will be given. Finaly a vast class of difference equations with variable coefficients and nonlinear difference e...
متن کاملA New Modification of the Reconstruction of Variational Iteration Method for Solving Multi-order Fractional Differential Equations
Fractional calculus has been used to model the physical and engineering processes that have found to be best described by fractional differential equations. For that reason, we need a reliable and efficient technique for the solution of fractional differential equations. The aim of this paper is to present an analytical approximation solution for linear and nonlinear multi-order fractional diff...
متن کاملComputational Method for Fractional-Order Stochastic Delay Differential Equations
Dynamic systems in many branches of science and industry are often perturbed by various types of environmental noise. Analysis of this class of models are very popular among researchers. In this paper, we present a method for approximating solution of fractional-order stochastic delay differential equations driven by Brownian motion. The fractional derivatives are considered in the Caputo sense...
متن کاملA Chebyshev functions method for solving linear and nonlinear fractional differential equations based on Hilfer fractional derivative
The theory of derivatives and integrals of fractional in fractional calculus have found enormousapplications in mathematics, physics and engineering so for that reason we need an efficient and accurate computational method for the solution of fractional differential equations. This paper presents a numerical method for solving a class of linear and nonlinear multi-order fractional differential ...
متن کاملAn analytic study on the Euler-Lagrange equation arising in calculus of variations
The Euler-Lagrange equation plays an important role in the minimization problems of the calculus of variations. This paper employs the differential transformation method (DTM) for finding the solution of the Euler-Lagrange equation which arise from problems of calculus of variations. DTM provides an analytical solution in the form of an infinite power series with easily computable components. S...
متن کامل